Rotation Matrix to Operate a Robot Manipulator for 2D Analog Tracking Objects Using Electrooculography
نویسندگان
چکیده
Performing some special tasks using electrooculography (EOG) in daily activities is being developed in various areas. In this paper, simple rotation matrixes were introduced to help the operator move a 2-DoF planar robot manipulator. The EOG sensor, NF 5201, has two output channels (Ch1 and Ch2), as well as one ground channel and one reference channel. The robot movement was the indicator that this system could follow gaze motion based on EOG. Operators gazed into five training target points each in the horizontal and vertical line as the preliminary experiments, which were based on directions, distances and the areas of gaze motions. This was done to get the relationships between EOG and gaze motion distance for four directions, which were up, down, right and left. The maximum angle for the horizontal was 46°, while it was 38° for the vertical. Rotation matrixes for the horizontal and vertical signals were combined, so as to diagonally track objects. To verify, the errors between actual and desired target positions were calculated using the Euclidian distance. This test section had 20 random target points. The result indicated that this system could track an object with average angle errors of 3.31° in the x-axis and 3.58° in the y-axis.
منابع مشابه
Affine Transform to Reform Pixel Coordinates of EOG Signals for Controlling Robot Manipulators Using Gaze Motions
Biosignals will play an important role in building communication between machines and humans. One of the types of biosignals that is widely used in neuroscience are electrooculography (EOG) signals. An EOG has a linear relationship with eye movement displacement. Experiments were performed to construct a gaze motion tracking method indicated by robot manipulator movements. Three operators looke...
متن کاملAdaptive Voltage-based Control of Direct-drive Robots Driven by Permanent Magnet Synchronous Motors
Tracking control of the direct-drive robot manipulators in high-speed is a challenging problem. The Coriolis and centrifugal torques become dominant in the high-speed motion control. The dynamical model of the robotic system including the robot manipulator and actuators is highly nonlinear, heavily coupled, uncertain and computationally extensive in non-companion form. In order to overcome thes...
متن کاملDesign and Performance Tests of a Mobile Mechanical Manipulator
Mobile mechanical manipulators are one of the automation aspects which were revealed in last years of twentieth century. These machines assume the responsibility of human and gradually expand the domain of their activities in industry. This paper is a presentation of the Sweeper Robot designed in the Robotic Laboratory of Iran University of Science and Technology. The original design of this ro...
متن کاملStiffness control of a legged robot equipped with a serial manipulator in stance phase
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the de...
متن کاملIntegrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics
In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics
دوره 3 شماره
صفحات -
تاریخ انتشار 2014